How the Service Works

Pricing & Billing

We do not have subscriptions or hidden fees. You pay only for results.

  • Fixed Price: Every successful purchase costs the current_price.
  • No Result = No Charge: If we find nothing, your balance remains exactly the same.
  • Safe Requests: action=search_... and action=account_... are FREE.
  • Paid Requests: Only action=buy_... deducts money.

The "Preview Quota" System

The service is primarily designed for finding and buying data. The preview_quota limits free searches to ensure fair usage.

How it works:

  • Your quota depends on your total deposit — the more you’ve deposited, the higher your quota.
  • Each search request (search_rawdata, search_people, search_filter) reduces your quota by 1.
  • If your preview_quota reaches 0, you must either wait for older searches to expire or make a purchase.

How to restore your quota?

  • Automatic reset (free): Any purchase (buy_rawdata or buy_people) instantly restores your quota to the base level.
  • Do I need to buy quota? No — not if you regularly purchase data.
  • Parsing or scraping only: Use action=buy_preview_quota only if you use the account exclusively for searching without buying data.

Data Formats

Type Format Rules Example Value
phone International E164. Digits only. No '+'. 12013427656
email Full valid email address. alex543@miller.com
username Alphanumeric. No spaces. alex654
full_name First and Last name. Latin/Cyrillic. Alex Miller
last_name Last name only. Miller
address Street and Zip code. US Only. 54 Elm St 34532
zip 5 digits. US Only. 32954
vin 17 characters. US Only. 4M2CN8H72AKJ00549
ssn 9 digits. US Only. 435655643


API Endpoints Reference

action = account_info

Get your balance, current price, wallet addresses, and preview quota.


action = check_payment

Force a system check for delayed crypto deposits.

action = search_rawdata

Searches all available databases for matching records. Returns raw data rows with all original columns from each source. Each row is a separate JSON object. The maximum number of results is limited based on your total deposit history.

  • Required: type, value

action = search_people

Searches databases where data is grouped by individual people. If matches are found, returns all available information for each matching person. Each person is represented as a separate JSON object. The maximum number of results depends on your total deposit history.

  • Required: type, value

action = search_filter

Searches the same person-level databases as search_people , but uses filters instead of exact value matches. Returns all people who match your selected criteria (e.g., country, age range, gender, or interests). Each matching person is returned as a separate JSON object with all available data. The maximum number of results depends on your total deposit history.

Required Parameter:

  • countryUS, GB, DE, RU, IT, ES, BR, PT, FR

Optional Parameters:

  • relatedpaypal, amazon, facebook, twitter, travel, crypto, dating
  • dob_start / dob_end1920-2010
  • genderM, F

action = buy_rawdata

Purchases all raw data records that match your query — the same full JSON response you’d get from search_rawdata . Returns matching rows from all databases, with each row as a separate JSON object. The maximum number of results is limited based on your total deposit history.

Tip: You can skip search_rawdata and call buy_rawdata directly — it’s safe and cost-effective.

Cost: You are charged current_price only if at least one record is found. If no data exists for your query, no money is deducted.

  • Required: type, value

action = buy_people

Purchases a single, complete person profile from the specified database. Each profile is uniquely identified by two parameters: db_name and code.

The structure and number of fields in the profile are exactly the same as what you see in the search results, so you can evaluate the data before purchasing.

⚠️ Important: Only db_name and code from search_people or search_filter results can be used for buy_people. The db_name format for people profiles always follows the country_data pattern (e.g., us_data, fr_data, de_data). Values from search_rawdata use a different database structure and cannot be used with buy_people.

Cost: You are charged current_price only if the profile exists and is successfully retrieved. If the record is invalid or not found, no money is deducted.

  • Required: db_name, code (Get these from search results)

action = buy_preview_quota

If you’ve exhausted your daily search quota ( preview_quota = 0), this action instantly resets it to your base level.

This is useful if you use the service primarily for data analysis or information gathering — without purchasing records.

Important: You **do not need** to buy quota if you regularly purchase data. Every successful buy_people or buy_rawdata request **automatically resets** your preview quota at no extra cost.

Cost: One purchase = current_price (same as any buy request).



Live Examples

Account Info
GET / POST

														{
  "event_result": "success",
  "event_message": "Account active",
  "username": "alex123",
  "user_balance": 41.89,
  "deposits_sum": 646.39,
  "current_price": 0.4,
  "preview_quota": 42
}
													
Check Payment
GET / POST

														{"event_result":"success",
														"event_message":"No new deposits found",
														"user_balance":34.33,"deposits_sum":50.08,
														"current_price":0.45}
													
Search Rawdata (Full Name)
Search

														{
    "event_result": "success",
    "event_message": "Rawdata found",
    "search_object": "Alex Miller",
    "search_type": "full_name",
    "data_mode": "rawdata",
    "row_count": 5,
    "name_count": 3,
    "email_count": 3,
    "address_count": 4,
    "phone_count": 4,
    "results": [
        {
            "db_name": "npd_2024",
            "code": "34651",
            "data": {
                "full_name": "**** ******",
                "address": "**, ********* ***, *****, ***** ****** ** **** ****",
                "county": "*********",
                "ssn9": "*******"
            }
        },
        {
            "db_name": "flytap_2022",
            "code": "90286",
            "data": {
                "full_name": "** **** ******",
                "dob": "****-**-**",
                "phone": "*************",
                "email": "*************@hotmail.com",
                "country": "**",
                "id": "********",
                "id2": "*********",
                "gender": "*",
                "reg_date": "****-**-**",
                "language": "**"
            }
        },
        {
            "db_name": "doctors_usa_2020",
            "code": "172673",
            "data": {
                "full_name": "**. **** ******** ******",
                "phone": "***********",
                "address": "**, *** *****, ****, * **** ***** **",
                "id": "**********",
                "gender": "*",
                "taxonomy_name": "********** & **********",
                "taxonomy_code": "**********",
                "credential": "*.*.",
                "npi_name": "**** ******** ******",
                "letter": "*",
                "last_update": "****-**-**",
                "enumeration_date": "****-**-**",
                "version": "*******************",
                "type_code": "*"
            }
        },
        {
            "db_name": "business_usa_2021",
            "code": "490035",
            "data": {
                "full_name": "**** ******",
                "phone": "***********",
                "email": "***********@foremost.com",
                "address": "**, ******, ****-****, * **** ***",
                "domain": "********.***",
                "company_name": "******** *********",
                "sic": "****",
                "iso_cgl": "*****",
                "sales_volume": "**** **** $***,***",
                "employees": "* ** *",
                "company_status": "*******",
                "location_type": "******",
                "company_type": "************",
                "credit_score": "*",
                "sic_name": "*********",
                "title": "******* *******",
                "naics": "******",
                "ncci": "****",
                "ca_wc": "****",
                "de_wc": "***",
                "pa_wc": "***",
                "mi_wc": "****",
                "nj_wc": "****",
                "ny_wc": "****",
                "tx_wc": "****"
            }
        },
        {
            "db_name": "acxiom_2020",
            "code": "690331",
            "data": {
                "full_name": "**** ******",
                "phone": "***********",
                "email": "**********@snet.net",
                "address": "**, ******, ****, ** ***** **",
                "ip": "***.***.***.*"
            }
        }
    ]
}
													
Search People (Address)
Search

														{
    "event_result": "success",
    "event_message": "People data found",
    "row_count": 5,
    "data_mode": "people",
    "balance": 34.78,
    "current_price": 0.45,
    "result": [
        {
            "db_name": "us_data",
            "code": 185752731,
            "first_name": "Maria",
            "middle_name": "J",
            "last_name": "Burden",
            "marital": "*******",
            "gender": "F",
            "dob_year": "1957",
            "dob_month": "*",
            "dob_day": "**",
            "credit_capacity": "$****",
            "number_children": "*",
            "home_purchase_date": "****",
            "animals_pets": "*,*",
            "donor": "*,*",
            "political_affiliation_donor": "*",
            "credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
            "investing_finance": "*,*",
            "cooking_food": "*",
            "movie_music": "*",
            "health_and_fitness": "*",
            "career_self_improvement": "*",
            "outdoor_enthusiast": "*,*,*,*",
            "last_name_rate": "*****",
            "full_name_rate": "**",
            "last_name_ethnic": "African American",
            "income": "Up to $10,000",
            "networth": "** ** $**,***",
            "address1": "**, ***** ******, *****, **** ******** ***|***_****",
            "address2": "**, *********, *****-****, **** **** * ***** **|***_**** (***_****, **_********_****, ******_****, *********_****)",
            "address2_location": "(**.******* -**.*******)",
            "address2_length_of_residence": "** ** ** *****",
            "address3": "**, *********, *****, **** **** * ***|***_****",
            "address4": "**, *******, *****, **** **** * **|***_****",
            "address5": "**, *******, *****, **** **** * ***|***_****",
            "address6": "**, ***** ****, *****-****, **** ******* ** *** *|***_****, **_********_****, ******_****",
            "address6_location": "(**.******* -**.*******)",
            "address7": "**, ***** ****, *****-****, **** ******* **|***_**** (***_****, **_********_****, ******_****, *********_****, *********_***_****)",
            "address7_location": "(**.****** -**.******)",
            "address8": "**, *********, *****-****, **** ***** **|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
            "address8_location": "(**.****** -**.******)",
            "phone1": "* (***) ***-****, **|***_****",
            "phone2": "* (***) ***-****, **|***_****, ******_**** (***_****)",
            "phone3": "* (***) ***-****, **|***_****",
            "phone4": "* (***) ***-****, **, ****|***_****",
            "phone5": "* (***) ***-****, **|***_****",
            "email1": "************@yahoo.com|********************************",
            "ssn9": "2**-**-****",
            "ssn_issued_state": "**"
        },
        {
            "db_name": "us_data",
            "code": 185749622,
            "first_name": "Donald",
            "middle_name": "W",
            "last_name": "Burden",
            "marital": "*******",
            "gender": "M",
            "dob_year": "1952",
            "dob_month": "**",
            "dob_day": "**",
            "credit_capacity": "$****",
            "number_children": "*",
            "home_purchase_date": "****",
            "animals_pets": "*,*",
            "donor": "*,*",
            "political_affiliation_donor": "*",
            "credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
            "investing_finance": "*,*",
            "cooking_food": "*",
            "movie_music": "*",
            "health_and_fitness": "*",
            "career_self_improvement": "*",
            "outdoor_enthusiast": "*,*,*,*",
            "last_name_rate": "*****",
            "full_name_rate": "**",
            "last_name_ethnic": "African American",
            "income": "Up to $10,000",
            "networth": "$**,*** ** $***,***",
            "address1": "**, ****** *****, *****, ** ******** ***|***_****",
            "address2": "**, *********, *****-****, **** **** * ***** **|***_**** (***_****, **_********_****, ******_****, *********_****)",
            "address2_location": "(**.******* -**.*******)",
            "address2_length_of_residence": "** ** ** *****",
            "address3": "**, ***** ****, *****-****, **** ******* ** *** *|***_****, **_********_****, ******_****",
            "address3_location": "(**.******* -**.*******)",
            "address4": "**, ***** ****, *****, **** ******* **|***_****",
            "address4_location": "(**.******* -**.*******)",
            "address5": "**, ***** ****, *****-****, **** ******* **|***_****, *********_***_**** (***_****, **_********_****, ******_****, *********_****)",
            "address5_location": "(**.****** -**.******)",
            "address6": "**, *********, *****-****, **** ***** **|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
            "address6_location": "(**.****** -**.******)",
            "phone1": "* (***) ***-****, **|***_****",
            "phone2": "* (***) ***-****, **|******_**** (***_****, ***_****)",
            "phone3": "* (***) ***-****, **, ******|**_********_****, *********_***_****",
            "phone4": "* (***) ***-****, **, ****|***_****",
            "phone5": "* (***) ***-****, **|***_**** (***_****, *********_****)",
            "phone6": "* (***) ***-****, **|***_****",
            "phone7": "* (***) ***-****, **|***_**** (*********_****)",
            "email1": "**************@yahoo.com|**************************",
            "ssn9": "2**-**-****",
            "ssn_issued_state": "**"
        },
        {
            "db_name": "us_data",
            "code": 210085391,
            "first_name": "Michelle",
            "middle_name": "",
            "last_name": "Cantea",
            "marital": "*******",
            "gender": "F",
            "dob_year": "1987",
            "credit_capacity": "$****",
            "home_purchase_date": "****-**",
            "last_name_rate": "**",
            "full_name_rate": "*",
            "income": "$65,000 to $74,999",
            "networth": "$**,*** ** $***,***",
            "address1": "**, ***** ****, *****-****, **** ******* **|**_********_****, ******_**** (***_****, ***_****, *********_****, *********_***_****)",
            "address1_location": "(**.****** -**.******)",
            "phone1": "* (***) ***-****, **|**_********_****, ******_**** (***_****, ***_*********_****)"
        },
        {
            "db_name": "us_data",
            "code": 213097313,
            "first_name": "Andrew",
            "middle_name": "",
            "last_name": "Cantea",
            "marital": "*******",
            "gender": "M",
            "dob_year": "1949",
            "dob_month": "*",
            "credit_capacity": "$*****",
            "home_purchase_date": "****-**",
            "linkedin_id": "******-******-********",
            "last_name_rate": "**",
            "full_name_rate": "*",
            "income": "$65,000 to $74,999",
            "networth": "$***,*** ** $***,***",
            "address1": "**, ****** ****, *****, **** ****** ******* **|*********_**** (***_****, ***_*********_****, *********_***_****)",
            "address1_location": "(**.******* -**.*******)",
            "address2": "**, ***** ****, *****-****, **** ******* **|***_****, **_********_****, ******_**** (***_****, *********_****, *********_***_****)",
            "address2_location": "(**.****** -**.******)",
            "phone1": "* (***) ***-****, **|**_********_****, ******_**** (***_****, ***_*********_****)",
            "phone2": "* (***) ***-****, **, ******|***_**** (**_********_****, ******_****, ***_****)",
            "phone3": "* (***) ***-****, **, ******|***_**** (**_********_****, ******_****, *********_****, *********_***_****)",
            "email1": "*******@chemicomays.com|********",
            "email2": "*******@yahoo.com|********",
            "email3": "************@comcast.net|***********************************************",
            "username3": "**************|*****_****",
            "password3": "**********|*****_****",
            "ssn9": "3**-**-****",
            "ssn_issued_state": "**",
            "ssn_alt_dob": "****-*-**"
        },
        {
            "db_name": "us_data",
            "code": 56525370,
            "first_name": "Judith",
            "middle_name": "A",
            "last_name": "Graham",
            "marital": "*******",
            "gender": "F",
            "dob_year": "1946",
            "dob_month": "*",
            "dob_day": "*",
            "credit_capacity": "$*****",
            "home_purchase_date": "****-**",
            "vehicle_owned": "*",
            "animals_pets": "*",
            "family_religion_politics": "*,*,*,*,*",
            "donor": "*,*",
            "political_affiliation_donor": "*",
            "credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
            "investing_finance": "*,*,*,*,*,**",
            "hobby_interest": "*,*,*",
            "arts_history_science": "*",
            "movie_music": "*,*,*",
            "health_and_fitness": "*,*,*",
            "collectibles_and_antiques": "*,*,*,*",
            "last_name_rate": "******",
            "full_name_rate": "***",
            "last_name_ethnic": "Scottish",
            "income": "$55,000 to $59,999",
            "networth": "$***,*** ** $***,***",
            "address1": "**, *********, *****-****, *** **** **** ***** ** **** *|**_********_****, ******_****",
            "address1_location": "(**.******* -**.*******)",
            "address1_length_of_residence": "** ***** ** ****",
            "address2": "**, *********, *****-****, *** **** **** ***** **|***_*********_**** (***_****, ***_****, **_********_****, ******_****, *********_***_****)",
            "address2_location": "(**.******* -**.*******)",
            "address3": "**, *********, *****-****, *** **** **** ***** ** **** *|***_**** (**_********_****, ******_****)",
            "address3_location": "(**.****** -**.******)",
            "address4": "**, *********, *****-****, *** **** **** ***** **|***_**** (**_********_****, ***_*********_****, *********_****, *********_***_****)",
            "address4_location": "(**.****** -**.******)",
            "address5": "**, *********, *****, *** **** **** ***** ** *|***_**** (*********_***_****)",
            "address6": "**, **** **********, *****-****, **** ********|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
            "address6_location": "(**.****** -**.******)",
            "address7": "**, ***** ****, *****-****, **** ******* **|***_**** (***_****, **_********_****, ******_****, *********_****, *********_***_****)",
            "address7_location": "(**.****** -**.******)",
            "phone1": "* (***) ***-****, **, ******|**_********_**** (*********_***_****)",
            "phone2": "* (***) ***-****, **|***_****, ******_****",
            "phone3": "* (***) ***-****, **, ******|**_********_**** (******_****)",
            "phone4": "* (***) ***-****, **, ****|***_****",
            "phone5": "* (***) ***-****, **|***_****",
            "email1": "**********@msn.com|*****************************",
            "vin1": "*****************, ****, ***, ****|***_*********_****",
            "ssn9": "1**-**-****",
            "ssn_issued_state": "**"
        }
    ]
}
													
Search Filter (Country, Related, Dob start, Dob end)
Search

														{
    "event_result": "success",
    "event_message": "People data found",
    "row_count": 5,
    "data_mode": "people",
    "balance": 41.49,
    "current_price": 0.4,
    "result": [
        {
            "db_name": "de_data",
            "code": 7008,
            "first_name": "Alexandre",
            "middle_name": "",
            "last_name": "Stefano",
            "gender": "M",
            "dob_year": "1973",
            "dob_month": "**",
            "dob_day": "**",
            "phone1": "** *** *** ****|******_****",
            "email1": "***********@ig.com.br|************************",
            "password1": "********|*****_****"
        },
        {
            "db_name": "de_data",
            "code": 75520,
            "first_name": "Andreas",
            "middle_name": "",
            "last_name": "Zawadke",
            "gender": "M",
            "dob_year": "1975",
            "dob_month": "**",
            "dob_day": "*",
            "facebook_id": "**********",
            "facebook_reg_date": "****-**-**",
            "phone1": "** *** *** ****|********_****, ******_****",
            "email1": "*********@gmail.com|************************",
            "username1": "********|*****_****",
            "password1": "*******|*****_****"
        },
        {
            "db_name": "de_data",
            "code": 77863,
            "first_name": "Nuno",
            "middle_name": "",
            "last_name": "Goncalves",
            "gender": "M",
            "dob_year": "1975",
            "dob_month": "*",
            "dob_day": "**",
            "address1": "*****, *******|******_****",
            "phone1": "** *** *** ****|******_****",
            "email1": "************@hotmail.com|************************",
            "username1": "**************|*****_****",
            "password1": "*********|*****_****"
        },
        {
            "db_name": "de_data",
            "code": 102385,
            "first_name": "Dino",
            "middle_name": "",
            "last_name": "Schwager",
            "gender": "M",
            "dob_year": "1971",
            "dob_month": "*",
            "dob_day": "**",
            "phone1": "** *** *** ****|******_****",
            "email1": "************@hotmail.de|************************",
            "password1": "*********|*****_****"
        },
        {
            "db_name": "de_data",
            "code": 173521,
            "first_name": "Olaf",
            "middle_name": "",
            "last_name": "Marsson",
            "gender": "M",
            "dob_year": "1979",
            "dob_month": "*",
            "dob_day": "**",
            "phone1": "** *** *** ****|******_****",
            "email1": "***********@hotmail.com|************************",
            "username1": "******_******|*****_****",
            "password1": "*********|*****_****"
        }
    ]
}
													
Buy Raw Data (Full Name)
PAID

														{
    "event_result": "success",
    "event_message": "Rawdata purchased",
    "user_balance": 34.78,
    "current_price": 0.45,
    "search_object": "Alex Miller",
    "search_type": "full_name",
    "data_mode": "rawdata",
    "row_count": 5,
    "name_count": 3,
    "email_count": 3,
    "address_count": 4,
    "phone_count": 4,
    "results": [
        {
            "db_name": "npd_2024",
            "code": "34651",
            "data": {
                "full_name": "Alex Miller",
                "address": "AK, Elmendorf Afb, 99506, 31160 Myrtle St Unit 3588",
                "county": "Anchorage",
                "ssn9": "9705165"
            }
        },
        {
            "db_name": "flytap_2022",
            "code": "90286",
            "data": {
                "full_name": "Mr Alex Miller",
                "dob": "1992-03-20",
                "phone": "5517996272403",
                "email": "alex_millerla@hotmail.com",
                "country": "BR",
                "id": "19660916",
                "id2": "434419812",
                "gender": "M",
                "reg_date": "2018-12-10",
                "language": "EN"
            }
        },
        {
            "db_name": "doctors_usa_2020",
            "code": "172673",
            "data": {
                "full_name": "Dr. Alex Sherwood Miller",
                "phone": "12036882806",
                "address": "CT, New Haven, 6511, 1 Long Wharf Dr",
                "id": "1336490648",
                "gender": "F",
                "taxonomy_name": "Obstetrics & Gynecology",
                "taxonomy_code": "207V00000X",
                "credential": "M.D.",
                "npi_name": "ALEX SHERWOOD MILLER",
                "letter": "A",
                "last_update": "2019-11-08",
                "enumeration_date": "2012-09-26",
                "version": "1690192137632612359",
                "type_code": "1"
            }
        },
        {
            "db_name": "business_usa_2021",
            "code": "490035",
            "data": {
                "full_name": "Alex Miller",
                "phone": "12013275555",
                "email": "alex.miller@foremost.com",
                "address": "NJ, Ramsey, 7446-1806, 4 Erie Plz",
                "domain": "foremost.com",
                "company_name": "FOREMOST INSURANCE",
                "sic": "6411",
                "iso_cgl": "96317",
                "sales_volume": "LESS THAN $500,000",
                "employees": "1 TO 4",
                "company_status": "PRIVATE",
                "location_type": "BRANCH",
                "company_type": "PROFESSIONAL",
                "credit_score": "C",
                "sic_name": "INSURANCE",
                "title": "Systems Analyst",
                "naics": "524291",
                "ncci": "8720",
                "ca_wc": "8720",
                "de_wc": "984",
                "pa_wc": "984",
                "mi_wc": "8720",
                "nj_wc": "8720",
                "ny_wc": "8720",
                "tx_wc": "8742"
            }
        },
        {
            "db_name": "acxiom_2020",
            "code": "690331",
            "data": {
                "full_name": "Alex Miller",
                "phone": "12036763474",
                "email": "hippybless@snet.net",
                "address": "CT, Hamden, 6514, 42 Duane Rd",
                "ip": "205.187.176.2"
            }
        }
    ]
}
													
Buy People
PAID

														{
    "event_result": "success",
    "event_message": "People data purchased",
    "data_mode": "people",
    "balance": 38.29,
    "current_price": 0.4,
    "result": [
        {
            "db_name": "us_data",
            "code": 3452254,
            "first_name": "Brynda",
            "middle_name": "D",
            "last_name": "Cochran",
            "marital": "Single",
            "gender": "F",
            "dob_year": "1946",
            "dob_month": 5,
            "credit_capacity": "$5625",
            "animals_pets": "3",
            "family_religion_politics": "2,8",
            "donor": "2",
            "political_affiliation_donor": "1",
            "credit_card_mail_order_buyers": "3,4,8,9",
            "investing_finance": "9",
            "hobby_interest": "1",
            "movie_music": "2,4",
            "last_name_rate": "50591",
            "full_name_rate": "1",
            "mode": 0,
            "last_name_ethnic": "Irish",
            "income": "$30,000 to $34,999",
            "networth": "$30,001 to $100,000",
            "address1": "SC, Greer, 29651-6460, 151 Cotton Rd|us_citizens_2023, acxiom_2020",
            "address1_location": "(34.914311 -82.183816)",
            "address1_length_of_residence": "15 Years or more"
        }
    ]
}
													
Buy Preview Quota
PAID

														{"event_result":"success",
														"event_message":"Preview quota successfully extended",
														"preview_quota":20,"balance":34.33,"current_price":0.45}
													


Error Codes Reference

  • Invalid or missing parameter... — Check your spelling.
  • No records for this data — Database is empty for this value. No money charged.

  • Rate limit, please wait... — Add a delay between requests.
  • Daily preview_quota exhausted. Wait... — Limit reached (0). Solution: Make any purchase to reset instantly.
  • Total deposit is below... minimum — Your total deposit is under $50. API is locked.

  • server error — Internal system error.
  • service unavailable — Maintenance. Try again later.