1. Total Deposit: API access requires a total
deposit of at least $50. Check here
2. Auth: Use your
api_key
(found in Settings ) and
parameter
action
in every request.
3. Method: We accept
both POST and GET.
4. URL: The base URL for all requests is https://uidfinder.world/v1/
5. Encoding: All value parameters sent to the server must be URL-encoded.
How the Service Works
Pricing & Billing
We do not have subscriptions or hidden fees. You pay only for results.
- Fixed Price: Every successful purchase
costs the
current_price. - No Result = No Charge: If we find nothing, your balance remains exactly the same.
- Safe Requests:
action=search_...andaction=account_...are FREE. - Paid Requests: Only
action=buy_...deducts money.
The "Preview Quota" System
The service is primarily designed for finding and buying
data. The
preview_quota
limits free searches to ensure fair usage.
How it works:
- Your quota depends on your total deposit — the more you’ve deposited, the higher your quota.
- Each search request (
search_rawdata,search_people,search_filter) reduces your quota by 1. - If your
preview_quotareaches 0, you must either wait for older searches to expire or make a purchase.
How to restore your quota?
- Automatic reset (free): Any purchase (
buy_rawdataorbuy_people) instantly restores your quota to the base level. - Do I need to buy quota? No — not if you regularly purchase data.
- Parsing or scraping only: Use
action=buy_preview_quotaonly if you use the account exclusively for searching without buying data.
Data Formats
| Type | Format Rules | Example Value |
|---|---|---|
phone |
International E164. Digits only. No '+'. | 12013427656 |
email |
Full valid email address. | alex543@miller.com |
username |
Alphanumeric. No spaces. | alex654 |
full_name |
First and Last name. Latin/Cyrillic. | Alex Miller |
last_name |
Last name only. | Miller |
address |
Street and Zip code. US Only. | 54 Elm St 34532 |
zip |
5 digits. US Only. | 32954 |
vin |
17 characters. US Only. | 4M2CN8H72AKJ00549 |
ssn |
9 digits. US Only. | 435655643 |
API Endpoints Reference
action = account_info
Get your balance, current price, wallet addresses, and preview quota.
action = check_payment
Force a system check for delayed crypto deposits.
action = search_rawdata
Searches all available databases for matching records. Returns raw data rows with all original columns from each source. Each row is a separate JSON object. The maximum number of results is limited based on your total deposit history.
- Required:
type,value
action = search_people
Searches databases where data is grouped by individual people. If matches are found, returns all available information for each matching person. Each person is represented as a separate JSON object. The maximum number of results depends on your total deposit history.
- Required:
type,value
action = search_filter
Searches the same person-level databases as
search_people
, but uses filters instead of exact value matches.
Returns all people who match your selected criteria
(e.g., country, age range, gender, or interests). Each
matching person is returned as a separate JSON object
with all available data. The maximum number of results
depends on your total deposit history.
Required Parameter:
country— US, GB, DE, RU, IT, ES, BR, PT, FR
Optional Parameters:
related— paypal, amazon, facebook, twitter, travel, crypto, datingdob_start/dob_end— 1920-2010gender— M, F
action = buy_rawdata
Purchases all raw data records that match your query —
the same full JSON response you’d get from
search_rawdata
. Returns matching rows from all databases, with each row
as a separate JSON object. The maximum number of results
is limited based on your total deposit history.
Tip: You can skip
search_rawdata
and call
buy_rawdata
directly — it’s safe and cost-effective.
Cost: You are charged
current_price
only if at least one record is found. If no data exists
for your query, no money is deducted.
- Required:
type,value
action = buy_people
Purchases a single, complete person profile from the specified database.
Each profile is uniquely identified by two parameters: db_name and code.
The structure and number of fields in the profile are exactly the same as what you see in the search results, so you can evaluate the data before purchasing.
⚠️ Important: Only db_name and code from search_people or search_filter results can be used for buy_people.
The db_name format for people profiles always follows the country_data pattern (e.g., us_data, fr_data, de_data).
Values from search_rawdata use a different database structure and cannot be used with buy_people.
current_price
only if the profile exists and is successfully retrieved.
If the record is invalid or not found, no money
is deducted.
- Required:
db_name,code(Get these from search results)
action = buy_preview_quota
If you’ve exhausted your daily search quota (
preview_quota
= 0), this action instantly resets it to your base level.
This is useful if you use the service primarily for data analysis or information gathering — without purchasing records.
Important: You **do not need** to buy
quota if you regularly purchase data. Every successful
buy_people
or
buy_rawdata
request **automatically resets** your preview quota at no
extra cost.
Cost: One purchase =
current_price
(same as any buy request).
Live Examples
Account Info
GET / POST
{
"event_result": "success",
"event_message": "Account active",
"username": "alex123",
"user_balance": 41.89,
"deposits_sum": 646.39,
"current_price": 0.4,
"preview_quota": 42
}
Check Payment
GET / POST
{"event_result":"success",
"event_message":"No new deposits found",
"user_balance":34.33,"deposits_sum":50.08,
"current_price":0.45}
Search Rawdata (Full Name)
Search
{
"event_result": "success",
"event_message": "Rawdata found",
"search_object": "Alex Miller",
"search_type": "full_name",
"data_mode": "rawdata",
"row_count": 5,
"name_count": 3,
"email_count": 3,
"address_count": 4,
"phone_count": 4,
"results": [
{
"db_name": "npd_2024",
"code": "34651",
"data": {
"full_name": "**** ******",
"address": "**, ********* ***, *****, ***** ****** ** **** ****",
"county": "*********",
"ssn9": "*******"
}
},
{
"db_name": "flytap_2022",
"code": "90286",
"data": {
"full_name": "** **** ******",
"dob": "****-**-**",
"phone": "*************",
"email": "*************@hotmail.com",
"country": "**",
"id": "********",
"id2": "*********",
"gender": "*",
"reg_date": "****-**-**",
"language": "**"
}
},
{
"db_name": "doctors_usa_2020",
"code": "172673",
"data": {
"full_name": "**. **** ******** ******",
"phone": "***********",
"address": "**, *** *****, ****, * **** ***** **",
"id": "**********",
"gender": "*",
"taxonomy_name": "********** & **********",
"taxonomy_code": "**********",
"credential": "*.*.",
"npi_name": "**** ******** ******",
"letter": "*",
"last_update": "****-**-**",
"enumeration_date": "****-**-**",
"version": "*******************",
"type_code": "*"
}
},
{
"db_name": "business_usa_2021",
"code": "490035",
"data": {
"full_name": "**** ******",
"phone": "***********",
"email": "***********@foremost.com",
"address": "**, ******, ****-****, * **** ***",
"domain": "********.***",
"company_name": "******** *********",
"sic": "****",
"iso_cgl": "*****",
"sales_volume": "**** **** $***,***",
"employees": "* ** *",
"company_status": "*******",
"location_type": "******",
"company_type": "************",
"credit_score": "*",
"sic_name": "*********",
"title": "******* *******",
"naics": "******",
"ncci": "****",
"ca_wc": "****",
"de_wc": "***",
"pa_wc": "***",
"mi_wc": "****",
"nj_wc": "****",
"ny_wc": "****",
"tx_wc": "****"
}
},
{
"db_name": "acxiom_2020",
"code": "690331",
"data": {
"full_name": "**** ******",
"phone": "***********",
"email": "**********@snet.net",
"address": "**, ******, ****, ** ***** **",
"ip": "***.***.***.*"
}
}
]
}
Search People (Address)
Search
{
"event_result": "success",
"event_message": "People data found",
"row_count": 5,
"data_mode": "people",
"balance": 34.78,
"current_price": 0.45,
"result": [
{
"db_name": "us_data",
"code": 185752731,
"first_name": "Maria",
"middle_name": "J",
"last_name": "Burden",
"marital": "*******",
"gender": "F",
"dob_year": "1957",
"dob_month": "*",
"dob_day": "**",
"credit_capacity": "$****",
"number_children": "*",
"home_purchase_date": "****",
"animals_pets": "*,*",
"donor": "*,*",
"political_affiliation_donor": "*",
"credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
"investing_finance": "*,*",
"cooking_food": "*",
"movie_music": "*",
"health_and_fitness": "*",
"career_self_improvement": "*",
"outdoor_enthusiast": "*,*,*,*",
"last_name_rate": "*****",
"full_name_rate": "**",
"last_name_ethnic": "African American",
"income": "Up to $10,000",
"networth": "** ** $**,***",
"address1": "**, ***** ******, *****, **** ******** ***|***_****",
"address2": "**, *********, *****-****, **** **** * ***** **|***_**** (***_****, **_********_****, ******_****, *********_****)",
"address2_location": "(**.******* -**.*******)",
"address2_length_of_residence": "** ** ** *****",
"address3": "**, *********, *****, **** **** * ***|***_****",
"address4": "**, *******, *****, **** **** * **|***_****",
"address5": "**, *******, *****, **** **** * ***|***_****",
"address6": "**, ***** ****, *****-****, **** ******* ** *** *|***_****, **_********_****, ******_****",
"address6_location": "(**.******* -**.*******)",
"address7": "**, ***** ****, *****-****, **** ******* **|***_**** (***_****, **_********_****, ******_****, *********_****, *********_***_****)",
"address7_location": "(**.****** -**.******)",
"address8": "**, *********, *****-****, **** ***** **|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
"address8_location": "(**.****** -**.******)",
"phone1": "* (***) ***-****, **|***_****",
"phone2": "* (***) ***-****, **|***_****, ******_**** (***_****)",
"phone3": "* (***) ***-****, **|***_****",
"phone4": "* (***) ***-****, **, ****|***_****",
"phone5": "* (***) ***-****, **|***_****",
"email1": "************@yahoo.com|********************************",
"ssn9": "2**-**-****",
"ssn_issued_state": "**"
},
{
"db_name": "us_data",
"code": 185749622,
"first_name": "Donald",
"middle_name": "W",
"last_name": "Burden",
"marital": "*******",
"gender": "M",
"dob_year": "1952",
"dob_month": "**",
"dob_day": "**",
"credit_capacity": "$****",
"number_children": "*",
"home_purchase_date": "****",
"animals_pets": "*,*",
"donor": "*,*",
"political_affiliation_donor": "*",
"credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
"investing_finance": "*,*",
"cooking_food": "*",
"movie_music": "*",
"health_and_fitness": "*",
"career_self_improvement": "*",
"outdoor_enthusiast": "*,*,*,*",
"last_name_rate": "*****",
"full_name_rate": "**",
"last_name_ethnic": "African American",
"income": "Up to $10,000",
"networth": "$**,*** ** $***,***",
"address1": "**, ****** *****, *****, ** ******** ***|***_****",
"address2": "**, *********, *****-****, **** **** * ***** **|***_**** (***_****, **_********_****, ******_****, *********_****)",
"address2_location": "(**.******* -**.*******)",
"address2_length_of_residence": "** ** ** *****",
"address3": "**, ***** ****, *****-****, **** ******* ** *** *|***_****, **_********_****, ******_****",
"address3_location": "(**.******* -**.*******)",
"address4": "**, ***** ****, *****, **** ******* **|***_****",
"address4_location": "(**.******* -**.*******)",
"address5": "**, ***** ****, *****-****, **** ******* **|***_****, *********_***_**** (***_****, **_********_****, ******_****, *********_****)",
"address5_location": "(**.****** -**.******)",
"address6": "**, *********, *****-****, **** ***** **|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
"address6_location": "(**.****** -**.******)",
"phone1": "* (***) ***-****, **|***_****",
"phone2": "* (***) ***-****, **|******_**** (***_****, ***_****)",
"phone3": "* (***) ***-****, **, ******|**_********_****, *********_***_****",
"phone4": "* (***) ***-****, **, ****|***_****",
"phone5": "* (***) ***-****, **|***_**** (***_****, *********_****)",
"phone6": "* (***) ***-****, **|***_****",
"phone7": "* (***) ***-****, **|***_**** (*********_****)",
"email1": "**************@yahoo.com|**************************",
"ssn9": "2**-**-****",
"ssn_issued_state": "**"
},
{
"db_name": "us_data",
"code": 210085391,
"first_name": "Michelle",
"middle_name": "",
"last_name": "Cantea",
"marital": "*******",
"gender": "F",
"dob_year": "1987",
"credit_capacity": "$****",
"home_purchase_date": "****-**",
"last_name_rate": "**",
"full_name_rate": "*",
"income": "$65,000 to $74,999",
"networth": "$**,*** ** $***,***",
"address1": "**, ***** ****, *****-****, **** ******* **|**_********_****, ******_**** (***_****, ***_****, *********_****, *********_***_****)",
"address1_location": "(**.****** -**.******)",
"phone1": "* (***) ***-****, **|**_********_****, ******_**** (***_****, ***_*********_****)"
},
{
"db_name": "us_data",
"code": 213097313,
"first_name": "Andrew",
"middle_name": "",
"last_name": "Cantea",
"marital": "*******",
"gender": "M",
"dob_year": "1949",
"dob_month": "*",
"credit_capacity": "$*****",
"home_purchase_date": "****-**",
"linkedin_id": "******-******-********",
"last_name_rate": "**",
"full_name_rate": "*",
"income": "$65,000 to $74,999",
"networth": "$***,*** ** $***,***",
"address1": "**, ****** ****, *****, **** ****** ******* **|*********_**** (***_****, ***_*********_****, *********_***_****)",
"address1_location": "(**.******* -**.*******)",
"address2": "**, ***** ****, *****-****, **** ******* **|***_****, **_********_****, ******_**** (***_****, *********_****, *********_***_****)",
"address2_location": "(**.****** -**.******)",
"phone1": "* (***) ***-****, **|**_********_****, ******_**** (***_****, ***_*********_****)",
"phone2": "* (***) ***-****, **, ******|***_**** (**_********_****, ******_****, ***_****)",
"phone3": "* (***) ***-****, **, ******|***_**** (**_********_****, ******_****, *********_****, *********_***_****)",
"email1": "*******@chemicomays.com|********",
"email2": "*******@yahoo.com|********",
"email3": "************@comcast.net|***********************************************",
"username3": "**************|*****_****",
"password3": "**********|*****_****",
"ssn9": "3**-**-****",
"ssn_issued_state": "**",
"ssn_alt_dob": "****-*-**"
},
{
"db_name": "us_data",
"code": 56525370,
"first_name": "Judith",
"middle_name": "A",
"last_name": "Graham",
"marital": "*******",
"gender": "F",
"dob_year": "1946",
"dob_month": "*",
"dob_day": "*",
"credit_capacity": "$*****",
"home_purchase_date": "****-**",
"vehicle_owned": "*",
"animals_pets": "*",
"family_religion_politics": "*,*,*,*,*",
"donor": "*,*",
"political_affiliation_donor": "*",
"credit_card_mail_order_buyers": "*,*,*,*,*,*,*,*",
"investing_finance": "*,*,*,*,*,**",
"hobby_interest": "*,*,*",
"arts_history_science": "*",
"movie_music": "*,*,*",
"health_and_fitness": "*,*,*",
"collectibles_and_antiques": "*,*,*,*",
"last_name_rate": "******",
"full_name_rate": "***",
"last_name_ethnic": "Scottish",
"income": "$55,000 to $59,999",
"networth": "$***,*** ** $***,***",
"address1": "**, *********, *****-****, *** **** **** ***** ** **** *|**_********_****, ******_****",
"address1_location": "(**.******* -**.*******)",
"address1_length_of_residence": "** ***** ** ****",
"address2": "**, *********, *****-****, *** **** **** ***** **|***_*********_**** (***_****, ***_****, **_********_****, ******_****, *********_***_****)",
"address2_location": "(**.******* -**.*******)",
"address3": "**, *********, *****-****, *** **** **** ***** ** **** *|***_**** (**_********_****, ******_****)",
"address3_location": "(**.****** -**.******)",
"address4": "**, *********, *****-****, *** **** **** ***** **|***_**** (**_********_****, ***_*********_****, *********_****, *********_***_****)",
"address4_location": "(**.****** -**.******)",
"address5": "**, *********, *****, *** **** **** ***** ** *|***_**** (*********_***_****)",
"address6": "**, **** **********, *****-****, **** ********|***_**** (***_****, **_********_****, ***_*********_****, ******_****, *********_****, *********_***_****)",
"address6_location": "(**.****** -**.******)",
"address7": "**, ***** ****, *****-****, **** ******* **|***_**** (***_****, **_********_****, ******_****, *********_****, *********_***_****)",
"address7_location": "(**.****** -**.******)",
"phone1": "* (***) ***-****, **, ******|**_********_**** (*********_***_****)",
"phone2": "* (***) ***-****, **|***_****, ******_****",
"phone3": "* (***) ***-****, **, ******|**_********_**** (******_****)",
"phone4": "* (***) ***-****, **, ****|***_****",
"phone5": "* (***) ***-****, **|***_****",
"email1": "**********@msn.com|*****************************",
"vin1": "*****************, ****, ***, ****|***_*********_****",
"ssn9": "1**-**-****",
"ssn_issued_state": "**"
}
]
}
Search Filter (Country, Related, Dob start, Dob end)
Search
{
"event_result": "success",
"event_message": "People data found",
"row_count": 5,
"data_mode": "people",
"balance": 41.49,
"current_price": 0.4,
"result": [
{
"db_name": "de_data",
"code": 7008,
"first_name": "Alexandre",
"middle_name": "",
"last_name": "Stefano",
"gender": "M",
"dob_year": "1973",
"dob_month": "**",
"dob_day": "**",
"phone1": "** *** *** ****|******_****",
"email1": "***********@ig.com.br|************************",
"password1": "********|*****_****"
},
{
"db_name": "de_data",
"code": 75520,
"first_name": "Andreas",
"middle_name": "",
"last_name": "Zawadke",
"gender": "M",
"dob_year": "1975",
"dob_month": "**",
"dob_day": "*",
"facebook_id": "**********",
"facebook_reg_date": "****-**-**",
"phone1": "** *** *** ****|********_****, ******_****",
"email1": "*********@gmail.com|************************",
"username1": "********|*****_****",
"password1": "*******|*****_****"
},
{
"db_name": "de_data",
"code": 77863,
"first_name": "Nuno",
"middle_name": "",
"last_name": "Goncalves",
"gender": "M",
"dob_year": "1975",
"dob_month": "*",
"dob_day": "**",
"address1": "*****, *******|******_****",
"phone1": "** *** *** ****|******_****",
"email1": "************@hotmail.com|************************",
"username1": "**************|*****_****",
"password1": "*********|*****_****"
},
{
"db_name": "de_data",
"code": 102385,
"first_name": "Dino",
"middle_name": "",
"last_name": "Schwager",
"gender": "M",
"dob_year": "1971",
"dob_month": "*",
"dob_day": "**",
"phone1": "** *** *** ****|******_****",
"email1": "************@hotmail.de|************************",
"password1": "*********|*****_****"
},
{
"db_name": "de_data",
"code": 173521,
"first_name": "Olaf",
"middle_name": "",
"last_name": "Marsson",
"gender": "M",
"dob_year": "1979",
"dob_month": "*",
"dob_day": "**",
"phone1": "** *** *** ****|******_****",
"email1": "***********@hotmail.com|************************",
"username1": "******_******|*****_****",
"password1": "*********|*****_****"
}
]
}
Buy Raw Data (Full Name)
PAID
{
"event_result": "success",
"event_message": "Rawdata purchased",
"user_balance": 34.78,
"current_price": 0.45,
"search_object": "Alex Miller",
"search_type": "full_name",
"data_mode": "rawdata",
"row_count": 5,
"name_count": 3,
"email_count": 3,
"address_count": 4,
"phone_count": 4,
"results": [
{
"db_name": "npd_2024",
"code": "34651",
"data": {
"full_name": "Alex Miller",
"address": "AK, Elmendorf Afb, 99506, 31160 Myrtle St Unit 3588",
"county": "Anchorage",
"ssn9": "9705165"
}
},
{
"db_name": "flytap_2022",
"code": "90286",
"data": {
"full_name": "Mr Alex Miller",
"dob": "1992-03-20",
"phone": "5517996272403",
"email": "alex_millerla@hotmail.com",
"country": "BR",
"id": "19660916",
"id2": "434419812",
"gender": "M",
"reg_date": "2018-12-10",
"language": "EN"
}
},
{
"db_name": "doctors_usa_2020",
"code": "172673",
"data": {
"full_name": "Dr. Alex Sherwood Miller",
"phone": "12036882806",
"address": "CT, New Haven, 6511, 1 Long Wharf Dr",
"id": "1336490648",
"gender": "F",
"taxonomy_name": "Obstetrics & Gynecology",
"taxonomy_code": "207V00000X",
"credential": "M.D.",
"npi_name": "ALEX SHERWOOD MILLER",
"letter": "A",
"last_update": "2019-11-08",
"enumeration_date": "2012-09-26",
"version": "1690192137632612359",
"type_code": "1"
}
},
{
"db_name": "business_usa_2021",
"code": "490035",
"data": {
"full_name": "Alex Miller",
"phone": "12013275555",
"email": "alex.miller@foremost.com",
"address": "NJ, Ramsey, 7446-1806, 4 Erie Plz",
"domain": "foremost.com",
"company_name": "FOREMOST INSURANCE",
"sic": "6411",
"iso_cgl": "96317",
"sales_volume": "LESS THAN $500,000",
"employees": "1 TO 4",
"company_status": "PRIVATE",
"location_type": "BRANCH",
"company_type": "PROFESSIONAL",
"credit_score": "C",
"sic_name": "INSURANCE",
"title": "Systems Analyst",
"naics": "524291",
"ncci": "8720",
"ca_wc": "8720",
"de_wc": "984",
"pa_wc": "984",
"mi_wc": "8720",
"nj_wc": "8720",
"ny_wc": "8720",
"tx_wc": "8742"
}
},
{
"db_name": "acxiom_2020",
"code": "690331",
"data": {
"full_name": "Alex Miller",
"phone": "12036763474",
"email": "hippybless@snet.net",
"address": "CT, Hamden, 6514, 42 Duane Rd",
"ip": "205.187.176.2"
}
}
]
}
Buy People
PAID
{
"event_result": "success",
"event_message": "People data purchased",
"data_mode": "people",
"balance": 38.29,
"current_price": 0.4,
"result": [
{
"db_name": "us_data",
"code": 3452254,
"first_name": "Brynda",
"middle_name": "D",
"last_name": "Cochran",
"marital": "Single",
"gender": "F",
"dob_year": "1946",
"dob_month": 5,
"credit_capacity": "$5625",
"animals_pets": "3",
"family_religion_politics": "2,8",
"donor": "2",
"political_affiliation_donor": "1",
"credit_card_mail_order_buyers": "3,4,8,9",
"investing_finance": "9",
"hobby_interest": "1",
"movie_music": "2,4",
"last_name_rate": "50591",
"full_name_rate": "1",
"mode": 0,
"last_name_ethnic": "Irish",
"income": "$30,000 to $34,999",
"networth": "$30,001 to $100,000",
"address1": "SC, Greer, 29651-6460, 151 Cotton Rd|us_citizens_2023, acxiom_2020",
"address1_location": "(34.914311 -82.183816)",
"address1_length_of_residence": "15 Years or more"
}
]
}
Buy Preview Quota
PAID
{"event_result":"success",
"event_message":"Preview quota successfully extended",
"preview_quota":20,"balance":34.33,"current_price":0.45}
Error Codes Reference
Invalid or missing parameter...— Check your spelling.No records for this data— Database is empty for this value. No money charged.
Rate limit, please wait...— Add a delay between requests.Daily preview_quota exhausted. Wait...— Limit reached (0). Solution: Make any purchase to reset instantly.Total deposit is below... minimum— Your total deposit is under $50. API is locked.
server error— Internal system error.service unavailable— Maintenance. Try again later.